Udder tissue development in sows and gilts is inhibited by:

A. Excess dietary protein
B. Mycotoxins especially ergot
C. Excess water intake
D. Excess feed intake in late pregnancy

The first sign of Agalactia are:

A. Dead piglets
B. Dead sow
C. Hardening of the margins of the udder
D. Hardening around the teats

Mastitis in sows:

A. Is always fatal
B. Can affect all or part of the udder
C. Causes no harm
D. Is not primarily infectious

Agalactia can lead to:

A. Infertility in sows
B. Prolonged weaning to service intervals.
C. Improved weaning weights of piglets
D. Lack of weaning weight in piglets

A sow recognised with initial hardening or congestion of the udder can be treated by which of the following?

A. Manual or physical removal of excess milk
B. Injection with antibiotics
C. Injection with anti-inflammatories and antibiotics
D. Reducing water supply.

Acute toxic mastitis:

A. Is always fatal
B. Does not require treatment
C. Does not lead to loss of milk production
D. Requires aggressive treatment with antibiotics and anti-inflammatories
Which of the following husbandry effects is not associated with acute mastitis?

A Sawdust bedding
B Fully slatted floors
C Poor hygiene
D Wood shavings for bedding

To prevent udder congestion and subsequent Agalactia

A Reduce feed levels immediate prior to farrowing
B Use lactator rations throughout gestation
C Do not feed bran prior to farrowing
D Feed only concentrated feed in the farrowing houses

Actinomycosis of the udder:

A Leads to total udder agalactia
B Affects individual glands permanently
C Is easily treated
D Is usually fatal

Reduction in weaning weight of 1kg/piglet:

A Extends the growing time to slaughter by up to 10 days
B Reduces the growing time to slaughter by up to 10 days
C Can be easily caught up post weaning
D Is not financially significant